در سالهای اخیر، تشخیص حرکات اشاره (زبان اشاره) مورد توجه پژوهشگران قرار گرفته است. زبان اشاره، ترکیبی از حالات دست، حرکات دست و حالات چهره است. املای انگشتی، یک نمایش برای حروف الفبای کلماتی است که در لغتنامه زبان وجود ندارد. در این مقاله یک سامانه املای انگشتی برای ت چکیده کامل
در سالهای اخیر، تشخیص حرکات اشاره (زبان اشاره) مورد توجه پژوهشگران قرار گرفته است. زبان اشاره، ترکیبی از حالات دست، حرکات دست و حالات چهره است. املای انگشتی، یک نمایش برای حروف الفبای کلماتی است که در لغتنامه زبان وجود ندارد. در این مقاله یک سامانه املای انگشتی برای تشخیص حروف الفبای فارسی ارائه شده که در آن برای هر حرف الفبا یک شکل دست در نظر گرفته شده است. این سامانه شامل پنج مرحله است: اول، جمعآوری داده تصویری؛ دوم، پیشپردازش؛ سوم، استخراج و آشکارسازی ویژگیهای شکل دست؛ چهارم، کاهش اندازه بردار ویژگی و پنجم، پیادهسازی تشخیص با استفاده از سه روش نزدیکترین همسایه (معيار فاصله اقليدسي و معيار فاصله اقليدسي نرماليزه) و شبكه عصبي. در این مقاله از تبدیل کسینوسی گسسته (DCT) برای کاهش اندازه بردار ویژگی استفاده شده است که نسبت به روشهای موجود، نظیر تبدیل فوریه گسسته و ضرايب توصيفگر فوريه عملکردی بهتر دارد. نتایج پیادهسازی با شبكه عصبي، دقت تشخیص حروف الفبا را 1/99% نشان داده است که نسبت به عملكرد سامانههاي موجود بهبود یافته است.
پرونده مقاله