با توجه به سرعت روزافزون تولید اطلاعات و همچنین وجود نیازمندی تبدیل اطلاعات به دانش، نیاز به الگوریتمهای دادهکاوی به شدت لمس میشود. خوشهبندی یکی از تکنیکهای دادهکاوی است و توسعه آن سبب پیشرفت در جهت فهم بیشتر محیط پیرامون میشود. در این مقاله، راهکاری پویا و مقیاس چکیده کامل
با توجه به سرعت روزافزون تولید اطلاعات و همچنین وجود نیازمندی تبدیل اطلاعات به دانش، نیاز به الگوریتمهای دادهکاوی به شدت لمس میشود. خوشهبندی یکی از تکنیکهای دادهکاوی است و توسعه آن سبب پیشرفت در جهت فهم بیشتر محیط پیرامون میشود. در این مقاله، راهکاری پویا و مقیاسپذیر برای خوشهبندی دادههای ترکیبی با ابعاد کلان به همراه نقصان در دادهها ارائه گردیده است. به علت هدفگذاری حوزه کلاندادهها، راهکار پیشنهادی به صورت توزیعشده، دادهها را پردازش میکند. در این راهکار از ادغام معیارهای فاصله رایج با مفهوم نزدیکترین همسایگی مشترک و همچنین به کارگیری نوعی از کدگذاری هندسی بهره برده شده است. همچنین روشی برای ترمیم دادههای از دست رفته در مجموعه داده نیز در آن در نظر گرفته شده است.
با بهرهگیری از تکنیکهای موازیسازی و توزیع پردازش فیمابین گرههای متعدد میتوان به مقیاسپذیری و تسریع دست یافت. الگوریتم پیشنهادی نیزاز این روشها به جهت دستیابی به این مهم بهره میبرد. ارزیابی این راهکار بر اساس معیارهای سرعت، دقت و حافظه مصرفی با مقایسه با دیگر موارد انجام میشود.
پرونده مقاله
الگوريتم ممتيک يکی از انواع الگوريتمهاي تکاملي است که با استفاده از جستجوي عمومي و جستجوي محلي فضاي حل مسأله را به صورت بهينه جستجو مينمايد. تعادل بين جستجوي عمومي و محلي، همواره يکی از مسايل مهم در اين دسته از الگوريتمها است. در اين مقاله يک مدل جديد ممتيکي با نام 2 چکیده کامل
الگوريتم ممتيک يکی از انواع الگوريتمهاي تکاملي است که با استفاده از جستجوي عمومي و جستجوي محلي فضاي حل مسأله را به صورت بهينه جستجو مينمايد. تعادل بين جستجوي عمومي و محلي، همواره يکی از مسايل مهم در اين دسته از الگوريتمها است. در اين مقاله يک مدل جديد ممتيکي با نام 2GALA ارائه شده است. اين مدل از ترکيب الگوريتم ژنتيک و اتوماتاي مهاجرت اشيا که نوع خاصي از اتوماتاي يادگير ساختار ثابت میباشد، تشکيل شده است. در مدل ارائهشده جستجوي عمومي توسط الگوريتم ژنتيک و يادگيري محلي به وسيله اتوماتاي يادگير انجام ميشود. در اين مدل جهت افزايش سرعت همگرايي و فرار از همگرايي زودرس، به طور همزمان از دو مدل يادگيري لامارکي و بالدويني استفاده شده است. در اين مدل تکاملي، جهت استفاده توأم از اثرات مثبت تکامل و يادگيري محلي، کروموزمها به وسيله اتوماتاي مهاجرت اشيا بازنمايي شدهاند. جهت نمایش برتری مدل ارائهشده نسبت به سایر روشهای موجود، از این مدل برای حل مسأله تناظر گراف استفاده گردیده است.
پرونده مقاله
رادیوشناختی به عنوان یک فناوری کلیدی برای مقابله با کمبود طیف فرکانسی در شبکههای بیسیم به طور گسترده مورد توجه قرار گرفته است. یکی از چالشهای مهم در تحقق شبکههای رادیوشناختی، امنیت این نوع شبکهها است. از مهمترین این تهدیدها، حمله تقلید از سیگنال کاربر اولیه است، چکیده کامل
رادیوشناختی به عنوان یک فناوری کلیدی برای مقابله با کمبود طیف فرکانسی در شبکههای بیسیم به طور گسترده مورد توجه قرار گرفته است. یکی از چالشهای مهم در تحقق شبکههای رادیوشناختی، امنیت این نوع شبکهها است. از مهمترین این تهدیدها، حمله تقلید از سیگنال کاربر اولیه است، بدین معنی که کاربر مخرب سعی دارد سیگنالی مشابه با سیگنال کاربر اولیه ارسال کند تا کاربران ثانویه را فریب داده و از ارسال سیگنالهای این کاربران در حفرههای طیفی جلوگیری کند و ضمن ایجاد ترافیک در شبکه، با به دست آوردن باند فرکانسی خالی، اطلاعات خود را ارسال کند. در این مقاله، روشی برای شناسایی حمله تقلید از سیگنال کاربر اولیه پیشنهاد میگردد که با خوشهبندی سیگنالهای ارسالی کاربران اولیه و کاربران مخرب، این سیگنالها را متمایز میکند. در این روش، تعداد سیگنالهای ارسالی در محدوده شبکه رادیوشناختی در طول خوشهبندی سیگنالها به دست میآید. با به کارگیری روش طبقهبندی مدل مخلوطی فرایند دیریشله که بر اساس روش غیر پارامتریک بیزین میباشد، سیگنالهای اولیه فعال در محیط طبقهبندی میشوند. همچنین برای دستیابی به سرعت همگرایی بالاتر در الگوریتم، روش فرایند رستوران چینی برای مقداردهی اولیه و نمونهبرداری غیر یکنواخت جهت انتخاب پارامتر خوشهها به الگوریتم اعمال میگردد.
پرونده مقاله
شبکههای حسگر بیسیم از هزاران گره کوچک تشکیل شدهاند که کوچکی و ارزانی این گرهها موجب استفاده گسترده آنها در زمینههای مختلف شده است. در کنار مزیتهای این شبکهها، محدودیت در مصرف انرژی، منابع پردازشی و ذخیرهسازی موجب شده مطالعات بسیاری بهمنظور کاهش این محدودیتها ا چکیده کامل
شبکههای حسگر بیسیم از هزاران گره کوچک تشکیل شدهاند که کوچکی و ارزانی این گرهها موجب استفاده گسترده آنها در زمینههای مختلف شده است. در کنار مزیتهای این شبکهها، محدودیت در مصرف انرژی، منابع پردازشی و ذخیرهسازی موجب شده مطالعات بسیاری بهمنظور کاهش این محدودیتها ارائه شود. در سالهای اخیر با ظهور مفهوم محاسبات مه، راهکارهای جدید و مؤثری در زمینه مسیریابی شبکههای حسگر بیسیم مطرح شده است. از آنجایی که در این شبکهها، حفظ گرههای زنده و کاهش انرژی مصرفی گرهها حایز اهمیت است لذا محاسبات مه در راستای این هدف به کار گرفته میشود. در پروتکلهای مطرح مسیریابی در شبکههای حسگر بیسیم، بهترین راه جهت ارسال دادهها به سرخوشهها و همچنین ایستگاه اصلی مورد بررسی قرارگرفته است. در مطالعات جدید از محاسبات مه، جهت یافتن بهترین روش مسیریابی بهره برده شده که در این روشها کاهش انرژی مصرفی و افزایش طول عمر شبکه را شاهد بودهایم. ما نیز در این مقاله یک معماری مبتنی بر رایانش مه جهت مسیریابی شبکههای حسگر بیسیم را ارائه دادهایم. مطابق نتایج شبیهسازی، این پروتکل، انرژی مصرفی را 9% و همچنین تعداد گرههای زنده را 74% در مقایسه با روش مورد بررسی بهبود بخشیده است.
پرونده مقاله
مخاطب یک تصویر مایل است که در کوتاهترین زمان، پیام اصلی تصویر را دریافت کند. از این رو سیستم بینایی انسان توجه بصری را ناخودآگاه به سمت نواحی برجسته، با فرض وجود اطلاعات مفید در آنها هدایت میکند. عملاً این فرض همواره صادق نبوده و در مواردی، نواحی برجسته صرفاً موجب مزا چکیده کامل
مخاطب یک تصویر مایل است که در کوتاهترین زمان، پیام اصلی تصویر را دریافت کند. از این رو سیستم بینایی انسان توجه بصری را ناخودآگاه به سمت نواحی برجسته، با فرض وجود اطلاعات مفید در آنها هدایت میکند. عملاً این فرض همواره صادق نبوده و در مواردی، نواحی برجسته صرفاً موجب مزاحمت بصری میگردند. از این رو در کاربردهای مختلف نیاز به ساز و کاری جهت تشخیص این نواحی میباشد تا با حذف این نواحی، حواس مخاطب از سوژه اصلی تصویر پرت نشود. همچنین نادیدهگرفتن این نواحی، کمک شایانی است به روشهایی که بر پایه تشخیص نواحی برجسته و مهم عمل میکنند. بدین منظور در این مقاله، بر اساس روشهای منطبق بر چالش عدم توازن دستهها، هر قطعه از تصاویر آموزشی با توجه به ماسک آنها به 9 دسته افراز میشود که شماره هر دسته متناسب با شدت مزاحمت است. سپس ویژگیهای مبتنی بر قطعه استخراج و دسته هر قطعه بر اساس روش نمایش تنک دومرحلهای و وزندار نمونه آزمون که بر مبنای سیستم کدگذاری و بازنمایی تنک است، تعیین میشود. به منظور ارزیابی دقیق روش پیشنهادی و مقایسه آن با سایر روشها، 4 معیار ارزیابی با رویکردهای مختلف معرفی و پیشنهاد میشود. با ارزیابی و سنجش نتایج نشان داده میشود که روش پیشنهادی علیرغم زمانبر بودن، نسبت به کارهای پیشین دارای دقت بیشتری است.
پرونده مقاله
با گسترش روزافزون شبکههای اجتماعی، علوم شبکه مورد توجه بسیاری از پژوهشگران در زمینههای مختلف قرار گرفته است. علاوه بر آن بسیاری از مسایل کاربردی مهندسی با استفاده از ابزار شبکههای اجتماعی مدلسازی شدهاند. پیشبینی تغییر و تحول در ساختار شبکههای اجتماعی یکی از مسایل چکیده کامل
با گسترش روزافزون شبکههای اجتماعی، علوم شبکه مورد توجه بسیاری از پژوهشگران در زمینههای مختلف قرار گرفته است. علاوه بر آن بسیاری از مسایل کاربردی مهندسی با استفاده از ابزار شبکههای اجتماعی مدلسازی شدهاند. پیشبینی تغییر و تحول در ساختار شبکههای اجتماعی یکی از مسایل اساسی در تحلیل شبکههای اجتماعی است که با عنوان مسأله پیشبینی ارتباط در علوم شبکه شناخته میشود. امروزه با گسترش استفاده از شبکههای اجتماعی، فعالیت افراد در قالب چندین شبکه با عنوان شبکههای اجتماعی ناهمگن رواج پیدا کرده است. پیشبینی ارتباط در شبکههای اجتماعی ناهمگن را میتوان بر اساس اطلاعات اضافی موجود نسبت به روشهای قبلی مورد بهبود قرار داد. در رویکرد پیشنهادی این مقاله، ابتدا یک معیار شباهت جدید برای کاربران در شبکههای ناهمگن بر اساس توسعه روشهای مطرح پیشین و با در نظر گرفتن ارتباط بین لایههای مختلف معرفی میشود، سپس با استفاده از رویکرد یادگیری باناظر و بهرهگیری از ویژگیهای تولیدشده بر مبنای معیار شباهت معرفیشده، الگوریتم پیشنهادی مورد تشریح قرار میگیرد. برای ارزیابی روش پیشنهادی از معیارهای استاندارد همانند دقت و صحت بهره گرفتهایم. مقایسه روش پیشنهادی با روشهای شناختهشده پیشین بر روی مجموعه دادههای مختلف نشان میدهد که روش پیشنهادی ما برای پیشبینی ارتباط از عملکرد بهتر و مطلوبتری برخوردار است به طوری که از نظر صحت تا ۲۰ درصد موجب بهبود عملکرد شده است.
پرونده مقاله
یکی از چالشهای اساسی در شبکههای حسگر بیسیم، مسأله پوشش ناحیه تحت بررسی توسط یک یا چند گره است. به علت عمر محدود حسگرها و نیاز به دادههای معتبر، کاربردهای نظارتی حساس نظیر شناسایی حریق، تشعشعات، نشت گاز، شناسایی نفوذ و غیره، پوشش منطقه تحت بررسی به وسیله چند گره حسگر چکیده کامل
یکی از چالشهای اساسی در شبکههای حسگر بیسیم، مسأله پوشش ناحیه تحت بررسی توسط یک یا چند گره است. به علت عمر محدود حسگرها و نیاز به دادههای معتبر، کاربردهای نظارتی حساس نظیر شناسایی حریق، تشعشعات، نشت گاز، شناسایی نفوذ و غیره، پوشش منطقه تحت بررسی به وسیله چند گره حسگر انجام میگیرد که به آن پوشش تایی میگویند. اکثر تحقیقات گذشته در زمینه ارزیابی پوشش تایی بر اساس مدل حسگری باینری صورت گرفته است. تحقیق حاضر بر آن است که ارزیابی پوشش تایی را با رویکرد تقسیمبندی مشبک و از طریق مدل حسگری احتمالی و با هدف بهبود دقت و کاهش زمان ارزیابی پوشش انجام دهد. در پایان نیز روش پیشنهادی در محیط نرمافزار 2NS پیادهسازی و با روشهای پیرامونی احتمالی و مشبک باینری، مقایسه شد. نتایج حاکی از بهبود دقت به میزان 14% و 24% نسبت به روشهای مقایسهشده و کاهش زمان محاسبه ارزیابی پوشش تایی به میزان 7% نسبت به روش پیرامونی احتمالی است.
پرونده مقاله
یادگیری متریک نیمهنظارتی مبتنی بر منیفلد در سالهای اخیر بسیار مورد توجه واقع شده است. این رویکردها، منظمسازی مبتنی بر فرض همواربودن دادهها روی منیفلد را اعمال میکنند، هرچند در معرض دو چالش قرار دارند: 1) شباهت بین دستههای مختلف، تقاطع منیفلدها با یکدیگر را ایجاد م چکیده کامل
یادگیری متریک نیمهنظارتی مبتنی بر منیفلد در سالهای اخیر بسیار مورد توجه واقع شده است. این رویکردها، منظمسازی مبتنی بر فرض همواربودن دادهها روی منیفلد را اعمال میکنند، هرچند در معرض دو چالش قرار دارند: 1) شباهت بین دستههای مختلف، تقاطع منیفلدها با یکدیگر را ایجاد میکند که با فرض همواربودن برچسب در این نواحی در تناقض است. 2) دستهبند NN1 که برای تعیین برچسب دادهها در مسایل یادگیری متریک اعمال میشود با وجود تعداد کم دادههای برچسبدار دقت مناسب را ندارد. در این مقاله روشی برای یادگیری متریک نیمهنظارتی با فرض قرارگیری دادهها در فضای لایهای ارائه شده که در آن از دانش پیشین موجود که همان فرض همواربودن دادهها روی هر منیفلد است به صورت دقیقتر بهرهبرداری شده است. در مرحله یادگیری متریک، فرض همواربودن در نواحی تقاطع اعمال نشده و در مرحله دستهبندی، دادههای برچسبدار در نقاط داخلی منیفلدها بر اساس فرض همواربودن توسعه داده شده است. تفکیک نقاط تقاطع منیفلدها از سایر نقاط بر مبنای رفتار متمایز لاپلاسین تابع هموار روی هر منیفلد در نقاط داخلی نسبت به سایر نقاط صورت میگیرد. آزمایشها نشاندهنده دقت خوب روش پیشنهادی نسبت به روشهای مشابه است.
پرونده مقاله