مروری جامع بر سنتز آرایههای آنتن خطی و صفحهای
محورهای موضوعی : مهندسی برق و کامپیوترعلی پسرک لو 1 * , محمد خلج امیرحسینی 2
1 - دانشكده مهندسي برق و كامپيوتر، دانشگاه صنعتی نوشیروانی بابل، بابل، ایران
2 - دانشکده مهندسی برق، دانشگاه علم و صنعت ایران، تهران، ایران
کلید واژه: آرایه آنتن, سنتز پترن تشعشعی, آرایه با فاصله¬گذاری یکنواخت, آرایه با فاصله-گذاری غیر یکنواخت.,
چکیده مقاله :
آرایه آنتن از کنار هم قرار دادن یک مجموعه از عناصر تشعشعی در یک ساختار هندسی مشخص بهدست میآید و ویژگیهای خاصی را ایجاد میکند که آنتنهای معمول، قادر به انجام آن ها نیستند. از جملهی این ویژگی ها قابلیت پویش پترن تشعشعی، پترنهای تشعشعی با سمتگرایی بالا و پترنهای تشعشعی با شکلهای دلخواه میباشند. برای طراحی آرایههای آنتنی سه راهبرد کلی وجود دارد: تعیین دامنههای جریان تحریک، تعیین فاز جریانهای تحریک و تعیین فاصلهی بین عناصر. برای هر کدام از این راهبردها تاکنون روشهای سنتز پترن متفاوتی ارائه شده است.
در سنتز پترنهای پهلوآتش، روشهای سنتز متعارفی که بر اساس تنها تعیین دامنه ی تحریک عناصر هستند عبارتند از تحریک یکنواخت برای دستیابی به حداکثر سمتگرایی ممکن و تحریک چبیشف و تیلور برای دستیابی به حداقل سطح گلبرگ کناری (SLL)به ازای پهنای بیم نصف توان (HPBW) مشخص. اخیرا برای دستیابی به پترنهای پهلوآتش با حداکثر سمتگرایی همراه با کنترل SLL یا HPBW، روش های سنتز تحلیلی جدیدی ارائه شده است که در بخش اول، که راهبرد تعیین دامنهی تحریک عناصر میباشد به بیان آنها پرداخته و با روشهای مرسوم چبیشف و تحریک یکنواخت مقایسه شدهاند.
برای دستیابی به پترنهای با شکل دلخواه و نامتقارن، روش متعارف، تعیین توام دامنه و فاز تحریک عناصر می باشد. اما پیادهسازی این نوع تحریک، بسیار پیچیده و پرهزینه است. اخیرا در مقالات روشهای سنتز پترنهای نامتقارن با استفاده از تعیین تنها فاز تحریک عناصر ارائه شده است که در بخش دوم به بررسی این روش ها و نقاط قوت و ضعف آنها پرداخته شده است.
در سالهای اخیر روش جدیدی برای سنتز پترن های پهلوآتش با سطح گلبرگ کناری معین ارائه شده است که در آن به جای وزندهی دامنهی تحریک عناصر، وزندهی بر روی فاصلهی بین عناصر انجام شود که به این آرایهها، آرایههای با فاصلهگذاری غیر یکنواخت میگویند و از ویژگی سادگی در پیادهسازی برخوردار است. در بخش سوم به بررسی روشهای سنتز این نوع آرایهها پرداخته میشود و مقایسهای بین آنها و آرایههای با فاصلهگذاری یکنواخت انجام شده و نقاط قوت و ضعف آنها بیان میشود.
An antenna array is created by assembling a set of radiating elements in a specific geometric structure, enabling unique features that conventional antennas cannot achieve. These features include the ability to scan radiation patterns, patterns with high directivity, and patterns with arbitrary shapes. Three general strategies are used for designing antenna arrays: determining excitation current amplitudes, excitation current phases, and the distance between elements. Various pattern synthesis methods have been proposed for each of these strategies.
In the synthesis of broadside radiation patterns, traditional methods focus on determining the excitation amplitude of elements. These methods include uniform excitation for maximum directivity and Chebyshev and Taylor excitation for minimizing the Side Lobe Level (SLL) for a specific Half-Power Beam Width (HPBW). Recently, new analytical synthesis methods have been introduced to achieve broadside patterns with maximum directivity, SLL, or HPBW control. The first part of this process, concentrating on determining the excitation amplitude strategy, explains these methods and compares them to traditional Chebyshev and uniform excitation methods.
To generate patterns with arbitrary and asymmetric shapes, the conventional approach involves determining both the excitation amplitude and phase of elements. However, implementing such excitation is intricate and costly. Recent articles have presented methods for synthesizing asymmetric patterns by solely determining the excitation phase of elements. In the second part, these methods are scrutinized along with their strengths and weaknesses.
A novel method has recently emerged for synthesizing broadside patterns with a specified Side Lobe Level. Instead of adjusting the excitation amplitude of elements, this method focuses on the distance between elements. These arrays, termed non-uniformly spaced arrays, are known for their straightforward implementation. The third part explores the synthesis methods of these arrays, comparing them to uniformly spaced arrays and outlining their advantages and disadvantages.
[1] C. A. Balanis, Antenna theory: Analysis and Design, John Wiley & Sons, 2016.
[2] R. S. Elliott, Antenna Theory and Design, IEEE Press, 2003.
[3] W. L. Stutzman, and G. A. Thiele, Antenna Theory and Design, John Wiley & Sons, 2012.
[4] R. C. Hansen, Phased Array Antennas. John Wiley & Sons, 2009.
[5] R. J. Mailloux, Phased Array Antenna Handbook, Artech house, 2017.
[6] Y. T. Lo, "Array theory," In Y. T. Lo and S. W. Lee (eds.), Antenna Handbook: Theory, Applications, and Design, pp. 713-803. Boston, MA: Springer US, 1988.
[7] C. L. Dolph, "A current distribution for broadside arrays which optimizes the relationship between beam width and side-lobe level," Proceedings of the IRE, vol. 34, pp. 335-348, Jun. 1946.
[8] M. Khalaj-Amirhosseini, "Synthesis of antenna arrays of maximum directivity for a specified sidelobe level," Iranian Journal of Electrical & Electronic Engineering, vol. 17, no. 3, Article ID: 2198, 2021.
[9] R. L. Pritchard, "Optimum Directivity Patterns for Linear Point Arrays," J. Acoust. Soc. Am., vol. 25, pp. 879-891, Sept. 1953.
[10] M. Khalaj-Amirhosseini, "Synthesis of antenna arrays of maximum directivity for a specified beamwidth." Iranian Journal of Electrical and Electronic Engineering 18, no. 3 (2022): 2198-2198.
[11] T. T. Taylor, "Design of line-source antennas for narrow beamwidth and low side lobes," IRE Trans. Antennas Propagation, vol. 3, no. 1, pp. 16-28, Jan. 1955.
[12] M. Khalaj-Amirhosseini, "Synthesis of linear and planar arrays with sidelobes of individually arbitrary levels," International Journal of RF and Microwave Computer‐Aided Engineering, vol. 29, no. 3 Article ID: e21637, Mar. 2019.
[13] O. M. Bucci, G. Mazzarella, and G. Panariello, "Reconfigurable arrays by phase-only control," IEEE Trans. on Antennas and Propagation, vol. 39, no. 7, pp. 919-925, Jul. 1991.
[14] R. Vescovo, "Reconfigurability and beam scanning with phase-only control for antenna arrays," IEEE Trans. on Antennas an Propagation, vol. 56, no. 6, pp. 1555-1565, Jun. 2008.
[15] S. Baskar, A. Alphones, and P. N. Suganthan, "Genetic algorithm-based design of a reconfigurable antenna array with discrete phase shifters," Microwave and Optical Technology Letters, vol. 45, no. 6, pp. 461-465, Jun. 2005.
[16] D. Gies and Y. Rahmat-Samii, "Particle swarm optimization for reconfigurable phase-differentiated array design," Microwave and Optical Technology Letters, vol. 38, no. 3, pp. 168-175, Aug. 2003.
[17] B. Fuchs, "Application of convex relaxation to array synthesis problems, IEEE Trans. Antennas Propagation, vol. 62, no. 2, pp. 634-640, Feb. 2014. [18] R. Elliott, "Design of line-source antennas for sum patterns with sidelobes of individually arbitrary heights," IEEE Trans. on Antennas and Propagation, vol. 24, no. 1, pp. 76-83, Jan. 1976.
[19] R. Elliott, "Design of line source antennas for difference patterns with sidelobes of individually arbitrary heights," IEEE Transactions on Antennas and Propagation 24, no. 3, PP. 310-316, May 1976.
[20] T. T. Taylor, "Design of circular apertures for narrow beamwidths and low sidelobes," IEEE Trans. Antennas and Propagation, vol. 8, no. 1, pp. 17-22, Jan. 1960.
[21] E. T. Bayliss, "Design of monopulse antenna difference patterns with low sidelobes," The Bell System Technical Journal, vol. 47, no. 5, pp. 623-650, May/Jun. 1968.
[22] R. S. Elliott, "Design of line-source antennas for narrow beamwidth and asymmetric low sidelobes," IEEE Trans. Antennas Propagation, vol. 23, no. 1, pp. 100-107, Jan. 1975.
[23] A. T. Villeneuve, "Taylor patterns for discrete arrays," IEEE Trans. Antennas and Propagation, vol. 32, no. 10, pp. 1089-1093, Oct. 1984.
[24] C. A. Olen and R. T. Compton, "A numerical pattern synthesis algorithm for arrays," IEEE Trans. Antennas and Propagation, vol. 38, no. 10, pp. 1666-1676, Oct. 1990.
[25] W. A. Swart and J. C. Olivier, "Numerical synthesis of arbitrary discrete arrays," IEEE Trans. Antennas and Propagation, vol. 41, no. 8, pp.1171- 1174, Aug. 1993.
[26] J. Li, R. Jin, and Y. Sheng, "A fast synthesis algorithm of adaptive beams for smart antennas," Microwave and Optical Technology, vol. 36, no. 6, pp. 503-507, Mar. 2003.
[27] Q. Wang and Q. -Q. He, "An arbitrary conformal array pattern synthesis method that include mutual coupling and platform effects," Progress in Electromagnetics Research, vol. 110, pp. 297-311, 2010.
[28] L. Caccavale, T. Isernia, and F. Soldovieri, "Methods for optimal focusing of microstrip array antennas including mutual coupling," IEE Proc. Microwaves, Antennas and Propagation, vol. 147, no. 3, Article ID: 199202, Jun. 2000.
[29] P. Rocca, N. Anselmi, and A. Massa, "Optimal synthesis of robust beamformer weights exploiting interval analysis and convex optimization," IEEE Trans. Antennas Propagtion, vol. 62, no. 7, pp. 3603 3612, Jul. 2014.
[30] Y. Han and C. Wan, "Scalable alternating projection and proximal splitting for array pattern synthesis," International Journal of Antennas and Propagation, vol. 2015, Article ID: 915293, 2015.
[31] S. -L. Chen, P. -Y. Qin, Y. J. Gue, Y. Liu, and P. You, "Generalized 2-D numerical pattern synthesis algorithm for low cross polarization and low sidelobe synthesis," IEEE Trans. Antennas Wireless Propagation Letters, vol. 16, pp. 2578-2581, 2017.
[32] M. Khalaj-Amirhosseini, "Phase-only power pattern synthesis of linear arrays using autocorrelation matching method," IEEE Antennas and Wireless Propagation Letters, vol. 18, no. 7, pp. 1487-1491, Jul. 2019.
[33] M. Khalaj-Amirhosseini, Giuseppe Vecchi, and Paola Pirinoli. "Near-Chebyshev pattern for nonuniformly spaced arrays using zeros matching method," IEEE Trans. on Antennas and Propagation, vol. 65, no. 10, pp. 5155-5161, Oct. 2017.
[34] M. Khalaj-Amirhosseini, "Design of nonuniformly spaced antenna arrays using Fourier’s coefficients equating method," IEEE Trans. on Antennas and Propagation, vol. 66, no. 10, pp. 5326-5332, Oct. 2018.
[35] M. Khalaj-Amirhosseini, "Design of nonuniformly spaced arrays using zeros matching method," International Journal of RF and Microwave Computer‐Aided Engineering, vol. 28, no. 9, Article ID: e21490, 2018.
[36] M. Khalaj-Amirhosseini, "Design of nonuniformly spaced antenna arrays using orthogonal coefficients equating method," Radioengineering, vol. 31, no. 4, 573-579, 2022.
[37] H. Schjaer-Jacobsen and K. Madsen, "Synthesis of nonuniformly spaced arrays using a general nonlinear minimax optimization method," IEEE Trans. Antennas Propagation, vol. 24, no. 4, pp. 501-506, Jul. 1976.
[38] J. -H. Bae, K. -T. Kim, J. -H. Lee, H. -T. Kim, and J. -I. Choi, "Design of Steerable Non-Uniform Linear Array Geometry for Side-Lobe Reduction," Microwave and Optical Technology Letter, vol. 36, no. 5, pp. 363-367, 2003.
[39] D. G. Kurup, M. Himdi and A. Rydberg, "Synthesis of uniform amplitude unequally spaced arrays using the differential evolution algorithm," IEEE Trans. Antenna Propagtion, vol. 51, no. 9, pp. 2210- 2217, Sept. 2003.
[40] H. Oraizi and M. Fallahpour, "Nonuniformly spaced linear array design for the specified beamwidth/sidelobe level or specified directivity/sidelobe level with coupling considerations," Progress in Electromagnetic Research M, vol. 4, pp. 185-209, 2008.
[41] M. Asif Zaman and Md. Abdul-Matin, "Nonuniformly spaced linear antenna array design using firefly algorithm," International Journal of Microwave Science and Technology, vol. 2012, Article ID: 256759, 2012.
[42] K. R. Mahmoud, "Synthesis of unequally-spaced linear array using modified central force optimization algorithm," IET Microwaves, Antennas & Propagation, vol. 10, no. 10, pp. 1011-1021, Jul. 2016.
[43] R. F. Harrington, "Sidelobe reduction by nonuniform element spacing," IRE Trans. Antennas Propagation, vol. 9, pp. 187-192, Mar. 1961.
[44] A. Ishimaru, "Theory of unequally spaced arrays," IEEE Trans. Antennas Propagation, vol. 11, no. 6, pp. 691-702, Nov. 1962.
[45] R. W. Redlich, "Iterative least squares synthesis of nonuniformly spaced linear array," IEEE Trans. Antennas Propagation, vol. 21, no. 1, pp. 106-108, Jan. 1973.
[46] F. Hodjat and S. A. Hovanessian, "Nonuniformly spaced linear and planar array antennas for sidelobe reduction," IEEE Trans. Antennas Propagation, vol. 26, no. 2, pp. 198-204, Mar. 1978.
[47] C. -C. Yu, "Sidelobe reduction of asymmetric linear array by spacing perturbation," Electronics Letters, vol. 33, pp. 730-732, 24 Apr. 1997.
[48] X. F. Ren, J. A. Azevedo and A. M. Casimiro, "Synthesis of nonuniformly spaced arrays using the Fourier transform and window techniques," IET Microwaves, Antennas & Propagation, vol. 3, no. 8, pp. 1245-1253, Dec. 2009.
[49] C. Lin, A. Qing, and Q. Feng, "Synthesis of unequally spaced antenna arrays by using differential evolution," IEEE Trans. Antennas Propagation, vol. 58, no. 8, pp. 2553-2558, Aug. 2010.
[50] K. Yang, Z. Q. Zhao, and Q. H. Liu, "Fast pencil beam pattern synthesis of large unequally spaced antenna arrays," IEEE Trans. on Antennas and Propagation, vol. 61, no. 2, pp. 627-634, Feb. 2013.
[51] A. Ishimaru, "Unequally spaced arrays based on the Poisson sum formula," IEEE Trans. Antennas Propagation, vol. 62, no. 4, pp. 1549-1554, Apr. 2014.
[52] B. Q. You, L. R. Cai, J. H. Zhou and H. T. Chou, "Hybrid approach for the synthesis of unequally spaced array antennas with sidelobes reduction," IEEE Antennas and Wireless Propagation Letters, vol. 14, pp. 1569-1572, 2015.
[53] C. L. Dolph, "A current distribution for broadside arrays which optimizes the relationship between beam width and side-lobe level," Proceedings of the IRE, vol. 34, no. 6, pp. 335-348, Jun. 1946.